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Abstract

An experimental investigation was performed controlling

a cantilevered beam in bending using proportional

feedback on a blend of collocated and non-collocated

sensor measurements using a single actuator. Exact

transfer functions between the control input and the

measurements were developed and compared to the finite

element method. By analyzing the open loop pole-zero

locations as a function of the measurement blending,

insight into the closed loop behavior is obtained.

Minimum phase behavior can be maintained for a range of

the blending ratio. Results using blended control were

compared to both proportional collocated feedback and

compensated collocated feedback using LQG methods. The

comparison was then extended to a theoretical

investigation using the blended measurements on a free-

free torsional model analogous to a gimbal. Advantages

and limitations of using blended measurements are

presented.
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AN EXPERIMENTAL DETERMINATION OF
THE EFFECTS OF BLENDING COLLOCATED

AND NON-COLLOCATED SENSOR MEASUREMENTS
TO CONTROL A FLEXIBLE STRUCTURE

I. Introduction

During the design process of a control system, the

design team must make tradeoff decisions between such

factors as desired performance, design complexity, cost,

reliability, and maintainability. An 'optimal' solution

would be one which meets performance criteria while

minimizing complexity and cost and maximizes reliability and

maintainability. Focusing on simplicity, a blended

measurement technique is investigated to control a flexible

structure and its merits reported.

A system's achievable performance is greatly influenced

by the relative placement of sensors and actuators on the

structure. A collocated sensor actuator pair corresponds to

physically attaching the sensor and the actuator to the same

location on the structure. Non-collocation refers to the

sensor being physically displaced from the location of the

actuator. For flexible structures, using collocation

results in a minimum phase system whereas the non-collocated
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systems are non-minimum phase. Non-minimum phase systems

are traditionally avoided in control design because they

exhibit undesirable properties, such as instability under

high gain feedback. There are advantages however in using a

non-collocated sensor, as presented in Lee [1]. By

comparing the effects of using collocated and non-collocated

measurements, Lee concluded a higher bandwidth and lower

root mean square response was possible using the non-

collocated sensor.

In this thesis a simple technique of blending two

sensor measurements, one collocated, the other non-

collocated, is employed to control a single actuator. It is

anticipated that using a blended measurement will produce

desirable properties of both the collocated and non-

collocated control systems while maintaining a low order

compensator. The performance gained by using a second

sensor will be investigated and presented along with its

limitations.

An investigation into the use of blended measurements

is begun by first examining the open loop pole-zero patterns

for several simple configurations. Exact transfer functions

are presented for a free-free beam and a cantilevered beam

with an applied point load. The exact location of the poles

and zeros are determined from the transcendental transfer

functions. Using these transfer functions, the blended
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measurement's transfer function is determined and the

relationship between the blending ratio and the zero

locations is investigated. The closed loop response is then

related to the open loop zero locations.

To demonstrate and validate the blended technique,

three systems will be investigated. The first two are a

cantilevered beam with and without an end mass. Analytical

finite element method (FEM) models are developed for both

cases and are compared to experimental results. Closed loop

control is then theoretically determined using MATLAB [2],

and is then validated using experimental data. A third

theoretical case is investigated using a free-free torsional

rod. The torsional rod is analogous to a gimbal system in

that it has both rigid body motion and symmetric modes.

Comparisons of the three systems will be made and advantages

and disadvantages of using blended measurements presented.
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II. Background

To investigate the use of a blended measurement, it is

first essential to examine the relationship between the

actuator and sensor locations. For a single-input single-

output (SISO) system, the closed loop performance is easily

examined using the classical analysis approach of the root

locus method. By examining the position of the roots

(system poles) in the complex plane as the system gain is

increased, the system response can be determined as a

function of the gain. As the system gain is increased the

closed loop poles will move toward the open loop system

zeros. Systems which have open loop zeros in the right half

of the complex plane are termed non-minimum phase (NMP). As

the gain of a NMP system is increased, the closed loop poles

will eventually move towards the zeros and result in

unstable performance once the poles cross into the right

half plane.

Numerous techniques have been developed to handle these

NMP systems. Rao and Westerheide [3] present a method of

modifying an LQR/LTR controller for an experimental grid

structure which is modeled as a NMP system. Misra [4]

presents a method of using feedthrough compensation, such

2-1



that the augmented plant is then minimum phase. Although

some success with NMP systems has been demonstrated, they

typically result in high order compensators. Essentially

these compensators place additional zeros near the plant

poles and then add poles to achieve the desired closed loop

performance. Each additionally placed zero increases the

complexity of the compensator and introduces robustness

issues when the modelled poles and actual poles differ

significantly.

An alternative method of dealing with the NMP system is

that of avoidance; using collocated sensor and actuator

pairs. Park and Asada [5] developed a special transmission

mechanism for a flexible arm such that the applied torque

was collocated with the sensor at the end of the arm. Using

this technique, the NMP system typical of robotic links with

end point sensors was avoided. The advantage of using

collocated measurements is developed in Junkins [6] using

symmetric output feedback. It is shown that using this type

of feedback, global stability robustness is achieved for all

plant variations. However, such a control system may be

difficult to implement since it requires a sensor at every

actuator which measures inertial position and rate. An

additional consideration is where to optimally place a

sensor or an actuator to provide the most sensor information

or to give the actuator greater control authority.
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Placement of sensor actuator combinations is discussed in

Lim [7].

The luxury of being able to decide sensor placement may

not be realistic, and may be fixed by physical constraints

of the system. Consider a gimbal mechanism used to track a

target as shown in the figure below. A torque motor is

placed on one gimbal axis, and due to physical limitations,

Figure 2.1 Sensor Locations on a Gimbal

the only possible locations of the rotation sensor is either

adjacent to the torque motor (collocated) or at the far end

of the gimbal (non-collocated). The question this thesis

will consider is "Are there advantages of using both sensors

to control the system using a blended measurement and if so,

what are the tradeoffs?"
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To compare the blended method to a control law using a

collocated sensor, the placement of the actuator and the

sensors will be fixed for both cases. To meet the objective

of a low order compensator, the blended method's compensator

design will be kept as simple as possible to achieve a

stable system. For the cantilevered beam, this corresponds

to using proportional rate feedback. For the torsion rod,

the minimal compensation is a PD or lead compensator to

stabilize the rigid body motion.

Exact Transfer Functions

The effect of the blending ratio on the transfer

function zeros is illustrated by first developing the exact

transfer function in terms of transcendental functions. The

exact poles and zeros will be calculated for the collocated,

non-collocated, and blended sensor position for a beam in

bending. These values will then be compared to the FEM

results to validate the zero locations using an FEM model.

Using Hamilton's principles, the governing equation for

a prismatic Beurnoulli-Euler beam with only end loading can

be written as [8:210]:

EIVIv(x, t) + oV(x, t) = 0

V aV , av 2  (2.1)
ax4  at 2
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V(x,t) represents the transverse displacement, x represents

the axial location along the beam, EI represents the bending

stiffness and a the mass density per unit length. The

solutionis dependant on the boundary conditions imposed on

the ends of the beam.

Exact Solution for a Free-Free Beam

As developed in Wie and Bryson [9] for a flexible free-

free beam, Eqn 2.1 can be non-dimensionalized with x and V

having units of the beam length L, and time in units of

(oL 3/EI)4. Taking the Laplace transform of the governing

equation and the boundary conditions yields:

VIV(x, s) - X4 V(x,s) = 0

Vi'(0,s) = Vi(1,s) =0 (2.2)

Vii(0,s) = f(s)

Vii (1, s) = 0

with the Laplace variable defined as:

s A ±frX (2.3)

For a collocated sensor actuator pair at one end of the

beam, the non-dimensionalized transfer function is given as:

2-5



V(O,s) - sinhlcosl-coshlsinI (2.4)
f(s) X3 (I - cosXcoshl)

As will be shown, this transfer function is characterized in

the s domain by an alternating pole-zero pattern along the

imaginary axis. In contrast, a separated sensor actuator

pair where the actuator is at one end of the beam and the

sensor at the other end has the following transfer function:

V(l,s) _ sinhl-sinl (2.5)
f(s) 1 3 (i - cosLcoshL)

For the non-collocated case, the zeros all lie on the real

axis, symmetric about the imaginary axis. This results in a

NMP system due to the zeros in the right half plane. In

between the extremes, the s domain characterization contains

both real and imaginary axis zeros.

Exact Solution for a Cantilevered Beam with End Excitation

Using the same method as described above, the exact

transfer function for the cantilevered beam with the

excitation point applied at the tip is found by applying the

following boundary conditions to Eqn 2.1.
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V(O,s) = VI,(0,s) = 0

V!,(1,s) = 0 V", (1,s) = f(s)

A solution of the form:

V(x, s) = C1sin~x + C2cosXx + C3sinh)x + C4coshXx (2.6)

is assumed and the constants are found from application of

the boundary conditions. The transfer function for an

arbitrary location x along the beam is given by:

V(x, s) - (cX+ch) (shlx-slx) + (sl+shl)(c;x-chlx) (2.7)
f(s) 2X3 (1 + cIchX)

For the collocated case, where the sensor is located at the

tip, the transfer function is given by:

V(1,s) _ cos)sinhl-coshlsinl (2.8)
f(s) 13(1 + cos;coshk)

The pole-zero patterns corresponding to the transfer

functions given in Eqn 2.7 and Eqn 2.8 will be presented in

a subsequent section.
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Exact Solution for Cantilevered Beam with Arbitrary

Excitation Point

To compute the transfer function for an arbitrary input

location, it is necessary to break the problem into two

portions. This is required since the governing Eqn 2.1 was

developed for the case where only end loads were applied.

The solution is found by breaking the beam in two sections

at the point of excitation and forcing continuity at the

break, corresponding to no breaks or kinks in the beam. The

two sets of boundary conditions are given as:

V(o,s) = Vi(O,s) =0

VlII(8-, S) ÷fs= VII(8,,'S)
V- (8-, s) = V- (8a, s)
V'(8,s) = v'(8÷,s)

V(8-,s) = V(8+,s)

VI(I,s) = Vl'(1,s) = 0

with 8 representing the point of application of the

excitation. The problem setup is shown in Figure 2.2.

Again an assumed solution of the form of Eqn 2.6 is

used for each of the two portions of the beam. The solution

then involves solving for the eight constants in the assumed

form of the solution. The problem was setup in matrix form

and input to Mathematica [10] to obtain a solution in
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Figure 2.2 Problem Setup for Beam with Arbitrary

Excitation Point.

symbolic form. Transfer functions were then computed for

the collocated position and the non-collocated position at

the end of the beam.

The collocated transfer function is given as:

V(8,s) - Ni + -2 + N3 + N4

f(s) 4X-I + cXchX)

Ni A chXsA + chX(l-28)sX

N2 A 2chXbsX8 - 2chX (1-8) sX (1-8) (2.9)

N3 & -cXshX - ck (1-28) shX

N4 A -2cXeshX8 + 2ci(1-8)shX(1-8)

ci Acoso, s& sino, ch A cosh), sh L sinh()

whereas the non-collocated transfer function is given as:

V(l,s) _ Ni + N2

f(s) 2X 3 (1 + cXchl)

Ni A chX8s. - sX(1-6) + chXsXb (2.10)

N2 A -cl8sh I + shX(1-8) - clshX8
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Both transfer functions are dependent on the excitation

position 8. Note that Eqn 2.9 reduces to Eqn 2.8 for 8 = 1,

as expected, for the sensor and excitation point at the tip

of the beam. A second crosscheck between transfer functions

can be demonstrated using the theory of reciprocity

[11:311], where interchanging the input and output results

in the same transfer function. Thus, Eqn 2.7 is equivalent

to Eqn 2.10 when the sensor location in Eqn 2.7 is matched

to the input location in Eqn 2.10 (i.e. 8 = x). The

reciprocity theorem is exploited in experimental modal

analysis where data can be equivalently taken using either a

fixed excitation and roving sensor measurement or vice-

versa. The most convenient method is chosen to extract the

data of interest. It should also be noted that as expected,

the transfer functions of the cantilevpred beam all have

equivalent denominator roots. This is because the

denominator represents the natural frequencies of the

structure (system poles) and is independent of both the

excitation location and the sensor position.

Exact Pole-Zero Patterns

Using the above transfer functions, the exact locations

of the poles and zeros are found by solution of the roots of

the denominators and numerators respectively. Poles and
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zeros on the imaginary axis equate to purely real roots of

the transcendental equations, whereas real axis roots are

complex solutions of the form a+ai, with equal magnitude

real and imaginary components, as seen by examination of Eqn

2.3. This special form where the magnitude of the real and

imaginary parts were equal (to produce real axis roots) was

used to compute the real axis zeros. This avoids a multi-

parameter search for zeros of the transfer function with an

arbitrary complex root of a+bi.

Martin [12] has shown that for undamped flexible bodies

where the sensor and actuator are collocated, the resulting

transfer function will have alternating poles and zeros on

the imaginary axis. Transfer functions for non-collocated

sensors will have both real and imaginary axis zeros.

Furthermore, when reduced order models of the transfer

functions are used, as in FEM models, the truncation method

will effect the zero locations [9]. Using MATLAB and both

the FZERO and FMIN algorithms, the exact poles and zeros

were computed and are listed in Table 2.1. Results of the

ten element FEM models using MATLAB's TZERO and EIG commands

are listed for comparison to the exact solutions.

Development of the FEM model along with the state-space

formulation is presented in Chapter III.
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Table 2.1. pole-Zero Locations for a Beam in Bending.

Free-free beam

Exact zeros FEM zeros
poles coll non-coll poles coll non-coll

±22.37i ±15.42i ±30.84 ±22.37i ±15.42i ±30.83
±61.67i ±49.96i ±99.93 ±61.69i ±49.97i ±99.86
±120.9i ±104.2i ±121.Oi ±104.3i

Cantilevered beam with end excitation (non-coll -> x=.5L)

Exact zeros FEM zeros
poles coll non-coll poles coll non-coll

±3.516i ±15.42i ±21.76 ±3.516i ±15.46i ±21.80
±22.03i ±49.96i ±62.57i ±22.04i ±50.50i ±62.56i
±61.70i ±104.2i ±177.7 ±61.71i ±106.8i ±177.2

Cantilevered beam with excitation at .4L (non-col1 -> x=L)

Exact zeros FEM zeros
poles coll non-coll poles coll non-coll

±3.516i ±7.541i ±17.34 ±3.516i ±7.541i ±17.34
±22.03i ±50.53i ±97.11i ±20.04i ±50.54i ±97.17i
±61.70i ±112.5i ±61.71i ±112.6i

For all three cases, the alternating imaginary axis pole-

zero pattern is exhibited for the collocated sensor. The

non-collocated cases have a combination of real and

imaginary axis zeros. Figure 2.3 illustrates the exact

pole-zero locations for the cantilevered beam with end point

excitation and collocated sensor. In contrast, Figure 2.4

shows the exact pole-zero locations when the sensor is

located at the midpoint of the beam.

2-12



jJ•

104.2

61.70

49.96

22.03

15.42

3.516

* not to sale

Figure 2.3 Collocated Pole-Zero Pattern of a
Cantilevered Beam with End Excitation.
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Figure 2.4 Pole-Zero Pattern for a Cantilevered Beam
with Endpoint Excitation and the Sensor at the Midpoint.

2-13



Performance Characteristics of Collocated and Non-Collocated

Systems

Using standard closed-loop performance criteria, the

difference between the two systems can be summarized as

follows, based on previous work by Lee [1]. The collocated

system is very robust to gain variations and has a faster

settling time, whereas the non-collocated system has a

higher achievable bandwidth and a lower root mean square

(RMS) response. Thus the impetus for using blended

measurements is to achieve the positive aspects of both

systems.

The primary advantage of using a collocated sensor, and

hence a minimum phase system, can be seen by comparing the

closed loop root loci. For the cantilevered beam with end

point excitation, the closed loop root locus using

collocated rate feedback is shown in Figure 2.5. For this

minimum phase system, the closed loop roots all remain in

the left half pl4-ne (LHP) for all negative values of the

feedback gain. In contrast, the non-collocated closed loop

root locus shown in Figure 2.6 shows the consequence of

having right half plane (RHP) zeros. This system is

unstable for all values of the feedback gain. A higher

order compensator is required to stabilize this NMP system.
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Figure 2.5 Root Locus Using Negative Rate Feedback with
a Collocated Sensor on a Cantilevered Beam.
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Figure 2.6 Root Locus Using Negative Rate Feedback with
a Non-Collocated Sensor on a Cantilevered Beam.
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Blending Method

Based on pole-zero patterns, there is a transition

between the all imaginary zeros of the collocated case to

the real zeros of the non-collocated system. By examining

the open loop pole-zero patterns of a blended measurement,

some of the system's closed loop behavior can be determined

and utilized to select a value for the blending ratio. The

transfer function for the blended sensor is written as:

Vbl (1 - a)V~o + a V/c (2.11)
f(s) f(s)

where a is defined as the blending ratio and Vc0/f(s) and

V,,/f(s) represent the collocated and non-collocated

transfer functions previously defined. Using output

feedback, the control force is then written as:

u = -K * [1-a ]CO(2.12)

0•II

with y,, and yn, representing the collocated and non-

collocated measurements respectively. The value K

represents the compensator which can either be a single gain
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constant or a higher order dynamic compensator acting on the

single blended measurement.

For a fixed actuator location and pair of sensors, the

open loop pole-zero pattern is plotted as a function of a

using Eqn 2.11. As the blending ratio is increased, greater

weighting is placed on the non-collocated measurement and

less on the collocated. On the pole-zero plot, the changing

blending ratio corresponds to the zeros moving along the

imaginary axis and eventually onto the real axis. While

movement of the zeros is along the imaginary axis, the

system remains minimum phase. Once the zeros coalesce and

split toward the real axes, the system is NMP. Thus the

system can be varied from minimum phase to non-minimum phase

by simply varying the blending ratio.

For the three cases considered above, the point at

which the system transitioned to NMP (occurrence of real

axis zeros) was computed using the FEM model and MATLAB's

TZERO algorithm. For the free-free beam, the transition

point was approximately a = 0.58, while for the cantilevered

beam with end excitation, the transition point was

approximately at a = 0.68. The cantilevered beam with

excitation at x - 0.4L had real axis zeros for values of a

greater than 0.4. Verification of the FEM results were

computed for several values of the blending ratio using the

exact solutions for the first two cases and Eqn 2.11. The
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zero locations as a function of the blending ratio are shown

in Figure 2.7 for the cantilevered beam with end excitation,

and in Figure 2.8 for the free-free beam. The patterns of

the zero movements are repeated up and down the imaginary

axis for higher order models.

104.2

61.70

49.96

15.s2

3.516

*not to scae

Figure 2.7 Zero Movement as the Blending Ratio is
Increased for the Cantilevered Beam with End Excitation.
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Figure 2.8 Zero Movement as the Blending Ratio is
Increased for the Free-Free Beam.

For a beam in bending, the pole-zeros patterns for both

a collocated and a non-collocated sensor location were

presented. Comparisons were made between the exact pole-

zeros using transcendental transfer functions and those

obtained using the FEM models. The FEM models and MATLAB

accurately computed the pole-zero locations for the three

cases considered. It was then shown that by blending

collocated and non-collocated measurements, the transfer

function will remain minimum phase for some range of the

blending ratio. In Chapter IV, the advantages and the

limitations of using a blended measurement to control a

flexible beam will be presented.
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III. Characterization of Experimental Equipment

The AFIT Cantilevered Beam (ACB) was originally

developed by WRDC/FIBG, to demonstrate active control of a

cantilevered beam in two orthogonal bending axes and

torsion. In this configuration, the ACB was used as an

analog to a large flexible space structure in which only

inertial sensors and actuators are used. The original

configuration had problems associated with the proof mass

actuators (limited force at low frequencies) and a low

frequency drift in the measurement channels. AFIT chose to

resurrect the ACB and use it as test article for candidate

control algorithms. Modifications to the original setup and

experimental results for closed loop control are included in

Jacques [13]. In its present configuration, the ACB is no

longer analogous to a flexible space structure due to the

use of a ground based actuator.

The ACB consists of a 70 inch inverted cantilevered

beam with end mass. Three piezo-resistive accelerometers

are available for acceleration measurements. A structural

dynamics shaker is used which can function as either the

disturbance input or the control actuator. Alternative

excitation is achieved through the use of an impact hammer
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with a force transducer. Digital control is facilitated

through the use of Systolic Array Systems' PC-1000

programmable controller [14]. Frequency response data is

obtained using a Tektronix 2642A spectrum analyzer [15].

Modal information is extracted from the frequency spectra

data using the STAR Modal software package [16]. A

representative configuration is shown in Figure 3.1.

spectrun
analyzer

:386 -PC

actuator

accelerometers

/ Digital Controller

Figure 3.1 ACB Experimental Configuration.
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Structure

The ACB is a 70" inverted cantilevered aluminum beam

with end mass. The beam is attached to an aluminum frame

structure. Originally, the end plate allowed for mounting

of linear proof mass actuators to control beam rotations.

Subsequent experiments with the ACB did not include the

plate because only control of bending modes were under

investigation. As will be shown in Chapter IV, the ACB's

mode shapes are significantly different with and without the

end mass. With the end plate installed the beam behaves as

a fixed-pinned beam rather than a fixed-free beam. This

allowed two separate examinations of the blending method on

the ACB, one with the end mass installed, and a second with

the mass removed. The physical characteristics of the beam

are listed in Table 3.1.
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Table 3.1 ACB Physical Properties

Property Description Value Units

Beam Length (L) 5.896 ft

Y Cross-Section Width 1.03 in

Z Cross-Section Width 0.754 in

Cross section Area (A) 5.393x10- 3  ft2

Young's Modulus (E) 1.555x10 9  lbf/ft 2

Beam Density (p) 5.373 slug/ft 3

Beam Mass 0.1708 slug

Z Moment of Inertia (I) 3.311x10-6  ft 4

Plate Diameter 1.0 ft

Plate Thickness 1.0 in

Plate Mass 0.3416 slug

Plate Y-Z Moment of Inertia 2.155x10- 2  slug ft 2

Analytical Model Development

Although the ACB has been used fcr several research

efforts, a good analytical model did not exist for the beam

in its current configuration. The two degree of freedom
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model used by McCall [17] did not include the endplate mass,

nor did the model compare well with experimentally obtained

results. The model developed by Jacques [13] based on

experimentally measuring modal frequencies and displacements

agreed well with the experimental data, as it should;

however, it had the additional mass of the linear actuators

on the end plate which are no longer present. Furthermore,

the sensors were not all placed in the same position

(because torsional rotations were also measured), and thus

the transfer function zeros do not correspond to the current

setup. It was desirable to have an analytical model in

state space form for theoretical analysis which could be

easily altered to accommodate different sensor/actuator

locations and/or beam configurations. To provide the

greatest flexibility, it was decided to assemble an FEM

using MATLAB, since this was the environment all the

theoretical work would be done in.

As was done in previous FEMs for this beam, it was

modeled as a ten element beam with lumped masses

representing the endplate and the sensor and actuator

attachments. Each element is represented as a Bernoulli-

Euler beam with two degrees of freedom at each node as shown

in Figure 3.2.

For each element, shape functions are matched to the

boundary conditions assuming the element is in static
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Figure 3.2 Ten Element Beam Model.

equilibrium and has only end loads applied. As developed in

Craig [8:387], each element has the following corresponding

mass and stiffness matrix:

156 22L 54 -13L;

= L 22L 4L 2 13L -3L 2  (3.1)
420 54 13L 156 -22L

-13L -3L 2 -22L 4L 2

12 6L -12 6L

- EI 6L 4L 2 -6L 2L 2  (3.2)
L3 -12 -6L 12L -6L

6L 2L 2 -6L 4L 2

The global mass and stiffness matrices are then formed
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by assembling the elemental matrices along the main diagonal

of the global matrices. The lumped masses are then added to

the appropriate diagonal entries of the global mass matrix,

as are the rotary inertia terms. The cantilevered end

constraint is imposed by simply removing the first two rows

and columns of the global matrices indicating no

displacements or rotations of the first node. Using the

global matrices, the governing equations are:

M.9 + K = E (3.3)

where F has only a single non-zero entry corresponding to

the actuator location. The velocity measurements

(integrated accelerations) are written as:

z = (ýk (3.4)

where C has non-zero entries at nodes where the sensors are

located. The transformation to state space is then computed

by first forming the transformation:

0 4 = Z (3.5)

where 0 is the modal matrix formed from the eigenvectors of

the global mass and stiffness matrices. Forming the

transformation and multiplying through by 0-1 to diagonalize

the mass and stiffness matrices results in:

0-1MOA + 0-1K•a = 0-1, (3.6)

Multiplying through by the inverse of the diagonalized mass
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matrix yields:

S+ [•-M1 K'h = [M$]-E (3.7)

which can be written as:

S+ = [M 4]-E (3 .8)

where on is a diagonal matrix with the natural frequencies

of the structure as the diagonal entries. Although no

attempt was made to analytically predict the modal damping

value, if viscous damping in the structure is assumed, it

can be introduced into Eqn 3.8 as:

S+ 2C 1. + w = [M ]-1E (3 .9)

where C is determined from experimental open loop data for

each mode.

The second order system is then easily converted to

first order using Eqn 3.9 with the following results:

= +

1C m(3.10)

which is now in the required state-space form. The

measurements in terms of the new state variable I is:

S= (0, 6 ]flj (3.11)

The resulting A, B and C matrices are then given by:
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A = 2 2(A)j (3.12)

B 0 E~-E

C= [0, 601

In this form, the A matrix for the ten element beam is a

40x40 matrix. For implementation on a digital controller

and ease of comparison, the model was truncated to reduce

this matrix to an 8x8 by retaining only the first four

bending modes. Note that there is no feedforward term and

hence the D matrix is a matrix of zeros of the appropriate

size.

Using the above method, a script file in MATLAB was

written to produce the required A, B and C matrices and is

given in Appendix C. This script file was used to model the

ACB as well as the free-free and cantilevered beams in non-

dimensionalized form used in the previous chapter.

Finite Element Method Model Validation

Comparing the analytical results to those experimentally

obtained, the difference was greater than ten percent. To

validate the FEM code, the exact solution to a cantilevered

beam was compared to the results of the FEM. For a
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cantilevered beam, the characteristic equation resulting

from the solution of the eigenvalue problem of Eqn 2.1

(developed in Chapter II) is given by:

cosh(XL) cos(L) +1=0 (3.13)

The natural frequencies (in Hertz) of the beam are then

found for each eigenvalue and are given by:

(AL) 2 
x[EI] 1/2 (3.14)

Eqn 3.13 is solved iteratively for the values of IL.

Comparing the results from the FEM to the exact solution

given above, the FEM model had less than one percent error

for the first three modes, and thus the FEM code was

considered valid.

Table 3.2 Comparison of FEM to Analytical

mode # Analytical (Hz) FEM (Hz) error (%)
1 6.6545 6.6536 .01
2 41.703 41.664 .09
3 116.77 116.53 .21

In Cristler [18], reference was made that a better

match of the FEM results to experimental data was attempted

by modelling the entire beam and supporting frame with a FEM

model. A closer match was not achieved. Previous work by

Yang (19] modeled the ACB and obtained a better match to

experimental values by modeling the cantilevered constraint

as a combination of a linear and torsional spring. An
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iteration was then performed on the values of the spring

constants to match the data. Although this method was

tested, it was found that better results were obtained by

simply iterating on the beam stiffness and end plate mass to

match the experimental data. Note that although it would

have been satisfying to have the analytical model match

experimental data without iterating on the beam physical

properties, the important result was to obtain a math model

which accurately matches experimental results for

simulations. Once the iteration was performed, this result

was achieved. The easily checked physical beam properties

such as length and cross sectional area of the beam were

verified; however, no attempt was made to check the values

of the beam density and elastic modulus. An approximate

ten percent variation from the values listed in Table 2.1

for the modulus and the mass of the end plate was required

to match the experimental data. The resulting state-space

A, B and C matrices used for analysis are contained in

Appendix B.

Actuator

Both excitation of the structure and control actuation

were achieved using an Acoustic Power Systems (APS) Model

113-LA structure dynamics shaker driven by an APS Model 114
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amplifier [20]. The shaker is linear over its operating

range (0 - 200 Hz) and no compensation was required to

account for the shaker dynamics. A frequency response test

was performed to ensure that using a single gain constant as

the transfer function over the operating range was valid.

Two modes of operation are possible: either current or

voltage and an optional rubber band suspension system to

counter gravity forces. By comparing the frequency response

for the two modes of operation, it was decided to operate

the shaker in the current mode because it exhibited a very

flat response in the frequency range of interest. In the

voltage mode, there was a large force spike at the low

frequency end of the bandwidth which was close to the

fundamental mode of the beam. For all tests, the optional

suspension was removed. The mass of the shaker's armature

was included in the analytical model of the structure.

During closed loop control tests, the actuator was used

to provide both the random disturbance and the control

force. This was achieved by adding the disturbance

(bandwidth limited random noise) and the control signal in

the digital controller. This method of using an actuator to

simultaneously provide both the excitation and the control

was used successfully in previous vibration experiments

[21]. Verification of the method was performed by comparing

results to those obtained using impact hammer excitation.
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Compared results agreed within the uncertainty in the test

equipment.

Controller

For control implementation, a Systolic Array Systems'

PC-1000 programmable digital controller was used. The PC-

1000 was operated through a PC compatible 386 host computer.

The PC-1000 is capable of handling 16 analog input and

output signals and is equipped with an 8086 based array

processor for processing sensor signals. There are 16

internal states available for estimation and control. The

sampling frequency is user selectable with a maximum

sampling rate of 2000 Hz. The PC-1000 uses 12 bit A/D

converters with user selectable ranges of +/-2.5, 5, and 10

Volts. To accommodate calibration constants, the controller

has programmable amplification/attenuation constants for

each of the measurement channels. Control algorithms are

accomplished on the controller by programming in the state

transition matrix as illustrated in Eqn 3.15.

E Uk.1l . FF11 F121 [Ykl(3.15)
LXk1 F2 . F22  k]
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Measurements

Inertial acceleration measurements are achieved through

the use of the Endevco model 2262 piezo-resistive

accelerometers. The advantage of this type of accelerometer

is its ability to read down to DC levels. This allows for

simple calibration procedure of simply taking the difference

in the output voltage in the upright and inverted position

and dividing by twice the local acceleration of gravity.

This calibration constant is then assumed constant

(experimentally verified) throughout its range of operation

(0-650 Hz). However, because of the ability to read DC,

care must be taken to ensure the acceleration measurements

are zeroed prior to testing. Accelerometer calibration data

is contained in Appendix A.

The demonstrated control system used in this thesis is

based on using a blending of velocity measurements. It is

possible to use linear velocity transducers (LVTs) to

measure velocity directly; however, the LVTs require

establishing a ground reference. A second disadvantage of

using the LVTs is that the beam deflections are not purely

linear and the use of the LVTs would limit the allowable

beam deflections. It was therefore decided to use only

acceleration measurements. To obtain velocity measurements

using the accelerometers, it is necessary to integrate the

3-14



acceleration measurements. Although analog integration

circuits were available from previous research efforts on

the ACB, it was decided to take advantage of the state space

controller and perform the integration digitally.

Ideally, an integration circuit would provide a -20

dB/decade attenuation and a -90 degree phase shift.

However, when the possibility of non-zero DC levels is

considered, the high gain of an ideal integrator at low

frequencies presents a problem. This quickly causes the

integrator to 'wind up' and saturate the controller input.

To avoid this, an integrator suitable for the ACB would

provide ideal integration within the control bandwidth,

combined with attenuation at very low frequencies. To

achieve the low frequency attenuation requires a zero be

placed in this frequency range.

Combining the above constraints to achieve the desired

integration and low frequency attenuation results in an

integrator transfer function of the following form:

G(s) = K(s + z) (3.16)

S 2 + 2Cps + p2

where the pole p is chosen at approximately one decade

before the first mode to preserve phase information and the

zero z is chosen at a decade below this for the same reason.

The damping ratio C is picked to avoid a resonant peak, at
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the break frequency of the second order pole. The gain K is

then set to provide the desired overall gain level. Once

the transfer function values where chosen, the discrete

finite difference equations were computed. For the ACB

(without end mass) an appropriate transfer function is given

by:

G(s) = 2 (s + .01) (3.17)
s2 + 2is + (2n)2

with resulting discrete state-space equations for a 2000 Hz

sample rate of:

=.9969 -. 01971

..0005 1

= [.4 992]x 0 (3.18)
B = . oo io] -~

.001]

C = [2 .021 D = 0

The discrete equations were then programmed into the PC-1000

and the transfer function of the digital integrator was

measured using the spectrum analyzer and compared to the

discrete Bode plot generated using MATLAB. Comparing the

two, there was an exact agreement in the magnitude plot

whereas the phase plots deviated at higher frequencies as

shown in Figure 3.3. The additional phase delay in the PC-

1000 integration was traced to an additional two sample

period delay in the controllers throughput. This was

3-16



verified by passing a pulse through the controller and

comparing the time domain signals before and after the

controller.

The pure two count time delay of the controller can be

represented in the Laplace domain as:

t-2T- e-2T9 1 (3.19)

where T is the sample period and s is the Laplace variable.

Using Euler's formula and letting s = jo results in:

e-1j = cos (2TO) -jsin (2TOc) (3.20)

50

-50

.& -SO

. 0oo Theoretical -

E5*imental ."

t40' "¶ 0" IS" t0' 0'lO

F rtequ.ency (Hs)

Figure 3.3 Comparison of Predicted and Measured Transfer

Functions for the Digital Integrator.
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which has unity magnitude for all w and a phase of -2wT

radians. Adding this additional phase lag into the

predicted plot matched the controller integration plot. The

ramifications of this unexpected two count delay is that

there is a large phase lag at higher frequencies (72 degrees

at 200 Hz) which will de-stabilize the high frequency modes

if not adequately attenuated.

Closed Loop Verification

To verify the overall setup, prior to testing the

blended measurements, a collocated proportional rate

feedback test was performed. A block diagram of the setup

is shown in Figure 3.4. The matrix K in the diagram for

this test was set to provide gain on only the collocated

sensor measurement. It was expected that the test would

produce closed loop damping values which agree well with

predicted results and in particular demonstrate the robust

stability of the collocated measurement. However, this was

not the case. Upon closing the loop, high frequency audible

resonances occurred and input saturation of the controllers

A/D converter was observed. This same behavior was

documented in McCall [17] where it was attributed to

cascading the multiple order integrators before the

controller input. For this test, however, only a single
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digital integration process can be summarized as follows.

Accelerometer signals need to be amplified to acceptable

levels for proper A/D conversion at the controller. For a 2

Hz acceleration signal, corresponding to the first mode, a

pre-gain of 20 was required for proper A/D conversion at the

PC-1000 input operated in the +/- 2.5V range. The

controller's output noise level, although small, is enough

to excite measurable high frequency modes of the beam. The

high frequency beam vibrations are measured by the
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accelerometers, amplified and fed back to the actuator. In

the process, the large phase lag at these higher frequencies

imposed by the digital controller further excited these

unstable modes. The higher frequency signals quickly

saturate the controller's input and a resulting limit cycle

is established. In theory, placing low pass filters between

the accelerometers and the controller would remedy the

problem. However, lowering the cutoff frequency of the low

pass filters in the amplification channel resulted in an

increase in the overall phase lag and caused instability at

even lower frequencies. Several filter combinations were

tried, using Butterworth filters both at the input and

output of the controller, but none remedied the problem.

The end result is that in theory the digital integration

would work if ideal filter components could be used that had

zero phase lag.

An approximate evaluation of this unstable behavior was

performed by using root locus techniques and a Pade'

approximate [22:208] where the pure time delay is

approximated as:

e-2TV , I-Ts (3.21)
I÷TS

which is based on expanding the left hand side of the above

equation in a series expansion and matching the first three
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Figure 3.5 Root Locus Pattern Using a Collocated Sensor
with Delay.

coefficients to an assumed rational transfer function. The

equation above represents a first order approximate. Adding

in the Pade' approximate and plotting the root locus shows

the unstable behavior for the higher modes by their movement

into the right half plane, depicted in Figure 3.5. Because

only a four mode model was used for the root locus, it could

not be used to determine which of the higher order modes

should go unstable and at what gain values, but it does

demonstrate the overall effect of the time delay in the

feedback path.

A second attempt using the digital integrators was
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demonstrated using the non-collocated (position 11)

measureme'nt. This time the results agreed well with

simulations and the high frequency saturation was not

observed. The high frequency signals were not present in

the response because the position 11 measurement corresponds

to a node location for all but the fundamental frequency

(beam end mass installed) as will be shown in Chapter IV.

Since this thesis explores blending collocated and non-

collocated measurements, the inability to achieve

satisfactory results with the collocated sensor forced an

alternative to the digital integration process be employed.

As a second choice, analog integration was used. By

placing the integrators in the feedback loop before the

controller, the high frequency signals are naturally

attenuated in the integration process and thus did not cause

saturation problems. The analog integrators used were those

available from previous work with the ACB by Jacques [13].

The integrators are based on the same design criteria as

discussed for the digital integrators. Figure 3.6 shows the

block diagram for each integrator. Two stages of amplifi-

cation are required to achieve the desired output level

without clipping the signal. Additionally, each integrator

provides a zero adjust to null the signal prior to testing.

Calibration data is contained in Appendix A.

A block diagram of the final measurement channels using
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Figure 3.6 Integration Circuit

the analog integrators is shown in the Figure 3.7. Note

that although not explicitly shown, the double sample period

delay is present in the throughput of the controller. Pure

collocated and pure non-collocated feedback tests were

adequately performed using the analog integrators. Results

will be discussed in the following chapter.

Modal Measurements

Open and closed loop measurements were obtained using a

Tektronix 2642A four channel spectrum analyzer. Modal data

was extracted from the analyzer plots using a STAR Modal
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Figure 3.7 Final Closed Loop Test Setup Block Diagram.

software package. The software features a curve fitting

routine which fits the measured frequency response functions

and determines values for the modal frequencies and damping

factors. Details of the analyzer and the software are

contained in references 15 and 16 respectively. Although

most data was obtained using the APS shaker as previously

described, an impact hammer was also used for impulse

response data and as an alternative check on closed loop

measurements without using a random input. The impact

hammer used was identical to the one used by McCall, and

calibration procedures and specifications can be found in

reference 17. Using impact testing, both frequency domain
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and time domain results could be used to compute the damping

and compared to the STAR Modal software. Frequency domain

damping values are computed using Eqn 3.22 [8:97]:

2 () - 1 (3.22)

with (a and W2 representing the -3 dB points on either side

of the resonant spike On- In the time domain, the log

decrement method is used with the damping given as [8:61]:

-In- _L 1 (3.23)
2i n M2

with M, and M2 representing the magnitude of the response on

two successive peaks of the response plot. The log

decrement method was used primarily for obtaining mode one

damping factors. The poor frequency resolution at the

lowest mode precluded accurate measurements of mode one

damping using Eqn 3.22.

In summary, an eighth order state-space model of the

ACB was developed using an FEM model. The model was tuned

to match experimental data. Velocity measurements are

obtained by passing the acceleration measurements through an

analog integration circuit. In the next chapter, closed-

loop results will be presented.
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IV. Blended Control on ACB with End Mass

Open Loop Response

Before demonstrating the closed loop response on the

ACB, validation of the analytical model was performed.

Using the FEM model described in Chapter III, a four mode

state-space model of the beam was obtained with an input at

position five on the beam and outputs corresponding to the

velocities at positions five, eight and eleven. To make

direct comparisons between theoretical and experimental

results, a conversion is required to convert between

predicted velocity measurements and experimentally measured

accelerations. This conversion is easily accomplished in

the frequency domain by multiplying (dividing) each velocity

(acceleration) measurement by the frequency (in rad/sec) to

obtain the corresponding acceleration (velocity). This

method was used throughout the thesis to make direct

comparisons between experimental and analytical results when

experimental accelerances were measured. Figure 4.1 shows

the theoretical open loop frequency response obtained using

the four mode FEM model for the three sensor locations. The

system poles (natural frequencies of the structure) appear

as spikes on the frequency plot whereas the zeros correspond
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to the dips. Note that all three sensor locations have

spikes at the same frequency. This is because the poles are

determined by the physical properties of the system and are

independent of sensor location. In contrast, as developed

in Chapter II, the system zeros are a function of sensor

location. The magnitude plot for each sensor location will

have dips at different frequencies due to the different zero

locations. Physically, the transmission zeros correspond to
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Figure 4.1 Theoretical Open Loop Comparison for the Three

Sensor Positions.
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frequencies at which sinusoidal actuator inputs are

undetected by the sensor. As the sensor's position is

changed, the transmission zeros also change. As expected,

the collocated sensor output (position 5) has an alternating

set of resonances (spikes) and anti-resonances (dips) which

correlate to the alternating pole-zero pattern on the

imaginary axis in the s domain. The non-collocated sensor

(position 11) does not exhibit the alternating

resonance/antiresonance pattern. This is due to the

non-collocated sensor having zero locations which lie on

both the real and imaginary axes in the s domain. The pole-

zero locations are given in Table 4.1. The frequency plot

in Figure 4.1 shows the relationship between the

actuator/sensor separation and the location of the

antiresonances. The further the separation distance is

increased, the higher the frequency at which the first

antiresonance will occur. For the pure non-collocated case

of a free-free beam with fully separated sensor and

actuator, the antiresonances occur only at infinity (9].

Table 4.1 Pole-Zero Locations for ACB with End Mass

zeros
poles (rad/sec) pos 5 pos 11
±13.19i ±23.5i ±215
±151.4i ±316i ±507i
±417.21 ±7691 ±2280
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A comparison between the theoretical and experimental

frequency response for the three sensor locat.ons is shown

in Figures 4.2, 4.3 and 4.4. The experimental frequency

response was obtained by measuring the transfer function

between a bandlimited (0-100 Hz) random noise excitation to

the shaker and the three different accelerometer outputs.

The ordinate axis is a measure of the accelerance and has

units of (ft/s2/Lbf). The actual transfer function measured

by the spectrum analyzer is in terms of volts/volt. For

direct comparison, the measurement is then scaled using the

calibration constants of the shaker and the accelerometers
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Figure 4.2 Open Loop Comparison for the Collocated

Sensor (position 5).
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found in Appendix A. The comparison plots show good

agreement between the analytical and experimental data, with

accurate representation of both the system poles and zeros

for the three different sensor locations. A comparison

between the modeled and measured natural frequencies is

given in Table 4.2.

Table 4.2 Modeled and Measured Natural Frequencies

mode modeled measured
1 2.10 Hz 2.12 Hz
2 24.1 Hz 24.3 Hz
3 66.4 Hz 66.1 Hz
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Figure 4.3 Open Loop Comparison for the Position Eight
Sensor.
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Figure 4.4 Open Loop Comparison for the Position Eleven
Sensor.

To experimentally demonstrate the movement of the open

loop zeros as a function of the blending ratio, a test was

performed comparing the blended transfer function to the

analytical blended results for a cantilevered beam. For the

test, a blending ratio of .35 was chosen. This value yields

ample movement of the zeros from the collocated measurement,

yet has adequate separation between the zeros for easy

identification. The experimental transfer function was

obtained by measuring the output of the digitally added

velocities of the collocated and non-collocated sensors
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compared to a random input disturbance. Comparison to the

analytical results is shown in Figure 4.5. The plot shows

good agreement between the two, and demonstrates the

movement of the transmission zeros towards each other as

expected, without affecting the pole locations. For this

comparison test, the end mass of the ACB was removed in

order to make a direct comparison to the exact solutions of

the cantilevered beam developed in Chapter II. Further

testing of the ACB with the end mass removed will be

presented in Chapter V. Table 4.3 lists the predicted and

measured zero locations.

Table 4.3 Blended Zero Locations for a = 0.35.

Exact FEM Experimental
21.38 Hz 29.2 Hz - 27 Hz
81.55 Hz 65.4 Hz - 70 Hz

The differences in the zeros between the FEM and the exact

solution is due in part to the fact that the exact solution

does not include the mass of the accelerometers and the

shaker armature in the model, combined with the fact that

the FEM model used is only a four mode model. The results

do demonstrate that the experimental blended measurements,

which will be used by the controller, follow the FEM model

results closely.
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Figure 4.5 Zero Locations for a Blended Measurement of a=
0.35 .

Closed Loop Performance Criteria

To make a fair comparison between two control systems,

performance criteria needs to be identified and compared

with respect to a common reference. Possible criteria for

comparison include closed loop bandwidths, modal damping

factors, stability margins, root mean square (RMS) noise

response and required control effort. To examine the

blended measurement method, several criterion were applied.
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Stability Comparisons The first comparison was

performed by using negative proportional velocity feedback

for both the collocated and non-collocated measurements and

comparing them to that of the blended measurement. Closed

loop stability for a single-input single-output (SISO)

system is easily visualized using the root locus method.

For SISO systems, stability can be examined by comparing the

values of the feedback gain which cause instability.

Figures 4.6 and 4.7 show the root locus patterns for the

collocated and non-collocated measurements respectively. As
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Figure 4.6 Root Locus Using Collocated Rate Feedback on
the ACB with End Mass.
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Figure 4.7 Root Locus Using Rate Feedback with the Non-
Collocated Sensor on the ACB with End Mass.

can be seen from Figure 4.6, the collocated measurement is

stable for all positive values of the proportional feedback

gain k, as evidenced by the locus remaining in the LHP. In

contrast, the non-collocated locus in Figure 4.7 shows the

movement of the locus into the RHP. This is due to the non-

minimum phase zeros. Instability occurs for a value of k

greater than 4. This value is strictly determined by the

amount of modal damping assumed in the model, which was

based on experimentally measured values. For an undamped

model, the system would be unstable for all values of k

greater than zero. Modal damping used in the FEM model was

4-10



obtained by curve fitting the open loop frequency responses

using the STAR Modal software.

A check on the damping values measured was performed

using feedback of the position eleven measurement.

Experimentally, the feedback gain was varied from one to ten

in integer increments. The beam was then excited by

applying an impact at the beam's midpoint to excite the

higher frequency modes. The results showed the second mode

was marginally stable for k = 4 and clearly unstable for

higher values of k. To the precision of the test

(instability at k = 4 ±1), the measured damping value for

the second mode was considered accurate. This test also

showed the limitation on using only the position eleven

measurement in the feedback loop. Clearly a more

sophisticated compensation scheme would be required to

achieve adequate performance if this were the only

measurement used.

Bandwidth Comparisons The anticipated advantage of the

blended measurement is an increase in the achievable closed

loop bandwidth while maintaining the stability properties of

the collocated case. Bandwidth is a measure of a systems

ability to track a sinusoidal input. The bandwidth is

defined as the frequency at which the response is down 3 dB

from the value of the steady-state closed loop gain. For

4-11



the collocated case, the upper limit of the bandwidth is

bounded by the location of the first zero. However, the

non-collocated sensor does not have this antiresonance and

thus the bandwidth does not have this limitation. This led

Lee [1] to the conclusion that the controller using a non-

collocated sensor would have a higher achievable bandwidth.

Following this assumption, to achieve the greatest possible

bandwidth and maintain stability, an initial choice of the

blending ratio is one in which the weighting on the non-

collocated measurement is greatest while maintaining a

minimum phase system. This value can be chosen by plotting

the open loop zeros as a function of the blending ratio.

Figure 4.8 shows the location of the zeros for an increasing

blending ratio. The poles of the system are unaffected by

the blending ratio since they are dependent on the physical

properties of the system and not the sensor locations. Note

that the pattern for the ACB exhibits the same behavior as

was demonstrated in Chapter II for the non-dimensionalized

beam. The additional mass and inertias added into the FEM

model for the ACB does not alter the basic pattern. Using

this method, a value of a equal to 0.85 represents the

greatest blending ratio while maintaining a minimum phase

system. With this bound on a, the system is stable for all

positive values of k.
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Figure 4.8 Open Loop Zero Locations for an Increasing
Blending Ratio.

The bandwidth can now be calculated using the blended

measurement by evaluating the output position as a function

of the commanded input frequency and determining the -3 dB

point from the steady-state gain. For the ACB however, a

velocity loop is closed rather than a position loop, and an

alternative method of determining bandwidth must be used.

This configuration is comparable to the control of flexible

structures where an inner and outer loop control scheme is

used. The inner loop is dedicated to controlling relative

velocities and positions, whereas the outer loop controller

must maintain control of the absolute (rigid body)
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velocities and positions. For this thesis, it was decided

to define the bandwidth in the usual manner and simply

derive the position measurements from the velocity

measurements by an integration. In the frequency domain,

this corresponds to a division by the frequency at each

value. While it is recognized that this is not a true

measure of bandwidth, it is in the author's opinion that for

control systems such as the ACB where only velocity loops

are closed, this method is acceptable for comparison

purposes between two candidate control systems.

Defining bandwidth as discussed above, with the output

taken at an intermediate position along the beam (position

eight), the resultant bandwidth for collocated and blended

measurement was compared. Both systems had essentially the

same bandwidth and the anticipated increase in bandwidth was

not achieved. This is due to the fact that the open loop

and closed loop zero locations are identical. The previous

work suggesting higher achievable bandwidths made

comparisons at two different output locations, one

collocated, the other non-collocated. In an actual control

system, the designated output should be a fixed position on

the structure with a desired performance. For a gimbal

mechanism, this may correspond to the midpoint on the gimbal

where a line of sight error is measured. Once this physical

output location is fixed, the transmission zero between the
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actuator and the position is fixed and can not be altered

under feedback. To demonstrate this, consider the block

diagram of the SISO system shown in Figure 4.9. The open

loop transfer function is written as:

Z = Co [sI- A]-I B (4.1)
r

which can be expressed in polynomial form as:

Y-no sr D " no A (s + zi) D A (s + pi) (4.2)

S[(91- A]-' 8

Figure 4.9 Feedback Loop Block Diagram.
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With pi and zi def ined as the open loop poles and zeros.

For the closed loop system, the output can be written as:

7 = C,,.g = C. [SI - A] -1 B u (4.3)

and the control input as:

u = r - K Cr z (4.4)

where the state vector x is expressed as:

,x = [sI - A] -1 B u (4.5)

Combining Eqns 4.3, 4.4 and 4.5, the controll is

equivalently:

U = 1 + K C r (4.6)
'f [SI-A] -1 B

and the closed loop transfer function found from combining

Eqn 4.3 and 4.6 is:

Y C, [sI - A] -1 B (4.7)
r 1 + K Cf [sI - A] --I B

To see the equivalence with Eqn 4.1, define the following:

Cf [sI - A] -1 B . nf (4.8)
D
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such that the transfer function in polynomial form is given

by:

r - Kno (4.9)r D + K nf

which has the identical zeros as in Eqn 4.2.

Although a primary consideration in exploring the

blended measurement was the aspect of a higher achievable

bandwidth, the stability and simplicity of using the blended

method warranted further investigation into its performance.

Root Mean Square Response For a given value of the

blending ratio, a fair comparison can only be made for

particular values of the feedback value k that match a

second criteria. For comparison, the value of the RMS

response at position eight to a given input disturbance for

the different cases was chosen. Additionally, the control

effort can be compared by evaluating the RMS response of

blended measurement (used as the controller input) and

multiplying it by the feedback gain k.

As derived in Kwaakernack and Sivan [23], the RMS

response of a system driven by zero mean stationary white

noise is found from the solution of the Lyapunov equation:
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AX + XAT +BQBT = 0 (4.10)

where A and B are as defined in the closed loop state space

equations, Q is a diagonal matrix containing white noise

input intensities, and X represents the covariance matrix of

the states. The RMS output is then found by forming the

output covariance matrix,

y = CXCT (4.11)

and computing the square root of the sum of the diagonal

entries. For the SISO case, Y will be a scaler

corresponding to the square of the output measurement.

Using this method, the RMS value of the output was

found as follows. The state-space equations including

random disturbance (v) and random measurement noise (w) are:

=Az + Bu + Ev
(4.12)

X= Cz + Fw

and using the control law u = -Ky the closed loop state

equation is:

= [A-BKC] + [E, -BKF][J (4.13)

which is a linear system driven by white noise. The RMS

response is then found from Eqn 4.10 and 4.11 with the A, B

and Q matrices as defined in the closed loop Eqn 4.13.
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Closed Loop Results

A comparison of the RMS response at position eight was

performed by applying a 70mv RMS (.376 Lbf) bandlimited , 0-

100 Hz, random input to the control actuator. The RMS value

of the position eight sensor was measured using the spectrum

analyzer. A theoretical comparison was performed using Eqn

4.10 matching the theoretical white noise disturbance

intensity to the experimental intensity. The results are

shown in Figure 4.10, which reveals that as the blending

ratio is increased, the RMS value at the position eight

sensor is also increased. This result is a consequence of

the blended zeros moving towards the second flexible pole

and effectively notching out the feedback signal at that

frequency. For higher order models, this notching effect

will occur at multiple higher frequency flexible modes. The

discrepancy between theoretical and experimental data is

attributed to the finite order model used as well as the

unmodeled dynamics of the control equipment. As illustrated

in Figure 4.10, the best blending ratio based on the RMS

response alone would be to set the blending to zero and use

just the collocated sensor. A second comparison was

performed by comparing the required control effort. The

control effort required as a function of the feedback gain k

was compared for the collocated and blended measurements as
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Figure 4.10 Theoretical Comparison of RMS Velocity at
Position Eight for both Collocated and Blended Feedback.

shown in Figure 4.11. Characteristic of the results is the

fact that the blended measurement control lies below the

control effort required for collocated control. This trend

is again due to the fact that the blended control has

notched out the second mode. As a result, little mode two

information is observed and hence little control effort is

spent controlling the second mode. Matching the control

effort for the two cases of 0.08 Lbf RMS corresponds to a

gain of 2.4 for the collocated measurement and 14.2 for the

blended measurement with a = 0.85. The control laws were

then implemented on the PC-1000 and the corresponding closed
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loop transfer functions are shown in Figure 4.12 for the

measurement taken at position five. It should be noted that

the experimental data shown in Figure 4.12 was produced for

illustration purposes using a wide bandwidth to show

multiple modes. Actual damping values were computed using a

much narrower bandwidth at the frequency of the mode of

interest as well as using the log decrement method for

calculating mode one damping. Table 4.4 contains the values

obtained for the damping factor for the first three modes.
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Table 4.4 DampinQ Factors (%) for Matched Control Effort

collocated blended open loop
mode predicted measured predicted measured

1 2.1 2.3 28.7 26 1.00
2 6.20 8.0 1.87 2.5 1.20
3 2.32 2.8 2.41 2.8 0.60

As a test of stability, the gain for toth control laws

was increased and the performance evaluated. Since both

systems are minimum phase, the only limit to the gain

increase is the limitations on the control equipment. Using

only the collocated sensor, gains greater than 14 yielded

undesirable results. The high feedback gain produced an

audible high frequency pitch from the actuator which was a
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result of attempting to drive the actuator at frequencies

above its operating bandwidth. The same behavior occurs

for the blended measurement, but not until the gain is

greater then 40. This result is due to the fact that the

non-collocated sensor is close to a node point for the

higher frequency modes and is therefore less sensitive to

the high frequency limitations of the control equipment.

Evaluating the results above for the matched control

effort, it is evident that the collocated measurement is

effective in controlling the second and third mode while

minimum control is exhibited over mode one. In contrast,

the blended measurement is effective at controlling mode one

while being ineffective at the higher modes. This suggests

decreasing the blending ratio to more evenly distribute the

control over the first two modes. This can be accomplished

by setting the blending ratio to 0.4 which yields an

identical damping value for the first two modes for a given

overall gain. The results of using this controller are

presented in the next section.

Comparison of Blended to LOG Methods

The above results showed that by adding a second

sensor, a second parameter was introduced into the control

law and hence both the magnitude and relative ratio between
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the first two modes could be controlled. A more

conventional approach to achieving this using a single

sensor would be to use an estimator to recreate the states

and then use proportional feedback on the estimated states.

To experimentally compare the results between using state

reconstruction and blended techniques a Linear Quadratic

Gaussian (LQG) compensator was implemented. An LQG

compensator is the combination of a Linear Quadratic

Regulator (LQR) with a Linear Quadratic Estimator (LQE).

One advantage of using LQG is that the regulator and

estimator can be designed independently, with the closed

loop poles being the union of the regulator and estimator

poles.

LOG Theory The regulator is designed assuming full

state feedback with the control law:

u = -K. (4.14)

where 9 is an estimate of the state vector. A linear

quadratic cost function is defined as:

= f(2c' Q, 2 + u Ra, u) dt (4.15)
0
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where Qc is the state weighting matrix and R, is the

weighting on control usage. Selection of Q, and R, are

dependent on the relative importance between speed of

response and the control effort required. If the state-

space pair [A,B] is completely controllable, then a solution

for the K matrix used in Eqn 4.14 which minimizes Eqn 4.15

exists. For control on the ACB, Qc and Rc were chosen such

that the eigenvalues of [A-BK] yielded the desired closed

loop damping values.

The estimated state vector used in Eqn 4.14 is formed

using the following observer equation:

S= A 2 + B . + L(y - C&) (4.16)

The estimator gain matrix L given in the observer equation

is found by minimizing the cost function:

S= f(X Qe f + XT Re x) dt (4.17)

0

which exists when the pair [A,C] is completely observable.

The matrices Q, and R, represent the process and measurement

noise covariances respectively. To take full advantage of

the LQG method, a statistical measure of the process and
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measurement noise is required. Since a statistical

characterization was not performed, the weighting matrices

where chosen such that the estimator poles, (eigenvalues of

[A-LC]), had the desired damping. Using previous results

form Cristler (18], a 20 - 30 % estimator damping ratio was

chosen for initial testing. A more formal discussion of LQG

theory is presented in Ridgely and Banda (24].

Implementation of the LQG compensator on the digital

controller is performed as follows. Given the state-space

equations

=Ax + Bu (4.18)

Y = ca (4.19)

Eqns 4.14 and 4.16 for the regulator and estimator can be

combined to yield:

R (A -BK -LC) + Ly (4.20)

which is the governing equation for the controller. In the

development of Eqn 4.20, it is assumed the control (u) sent

to the plant is identical to that given in the regulator

equation. If the actuator output force is different, due to

a saturation limit, the actual control force exerted should

4-26



be fedback for the state estimation. The discrete

equivalent to Eqn 4.20 is given by [25:296]:

= AJT, -1 A T _
.k÷1 e zk +ALK[eALX IiLyk (4.21)

where T is the sample period, and ALK defined as:

ALK A [A - BK - LCJ (4.22)

The matrix partitions given previously in Eqn 3.15 for the

PC-1000 digital controller is then:

F 11 = 0 F1 2 = -K
(4.23)

F 2 1 = eAJT F22 - A-e

The partitions F21 and F22 were computed using MATLAB's C2D

algorithm. Regulator and estimator gains K and L were

computed using the LQR and LQE algorithms in MATLAB.

LOG Results The objective of using the LQG controller

was to experimentally compare the blended control using two

sensors to the LQG controller using a single collocated

sensor. A performance goal of 15% damping for the first two

modes

was arbitrarily set. For the blended method, the blend

ratio was chosen to provide equal damping on the first two
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modes (a = 0.4) and then the gain was selected to yield the

15% target value (k = 12.1). For the LQG design it was

decided to use a fourth order model for the estimator to

provide the estimates of the first two modes. The estimator

model was produced by retaining only the first two bending

modes from the FEM model. The estimator gains were chosen

by adjusting the noise covariance values in Eqn 4.17 to

obtain the desired estimator damping. Numerous iterations

on the estimator damping values were tested. The best

results were achieved using damping values 2-3 times the

desired modal damping values. The lightly damped estimators

did not produce the desired modal damping, while the more

heavily damped estimators resulted in an excessive dc drift

from the controller. Once the estimator design was

complete, the regulator gains were computed using Eqn 4.15

by varying the state weightings and the control penalty to

yield the desired 15% damping values. The resulting

compensator in polynomial form is given below:

GLO(s) = (s+3.78) (s+20.3±80.7i)(s+67.5±145i) (s+5.58±13.4i) (4.24)

The resulting closed loop responses using the two control

laws is shown in Figure 4.12. The obtained modal damping

values are tabulated in Table 4.5.
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Table 4.5 Damping Factors for Blended and LOG Controllers

blended LQG
mode predicted measured predicted measured

1 15.0 15 15.0 12
2 15.0 17 15.0 14.5

The results show that both methods were capable of damping

modes one and two, although there was a greater discrepancy

between the predicted and experimental results for the LQG

controller. This is in part due to the fact that only a two

mode model was used in the estimator while the measurements

still contain information on the higher modes with a

potentially destabilizing effect. This is illustrated in

Figure 4.13 where the third mode remained close to its open

loop value. Use of model suppression techniques or a higher

order compensator may produce more predictable results.

Additionally, there is a relationship between the estimator

damping factors and the achievable damping values which

requires further characterization.

Comparing the form of the compensator in Eqn 4.24 to

that using a blended method, the simplicity of the blended

method is apparent. Both the controllers are minimum phase

and are stable for all gain variations within the limits of

the equipment.
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Figure 4.13 Closed Loop Comparison using Blended and LQG
Compensation.

Conclusions

Closed loop control on the ACB with end mass was

demonstrated using a single measurement feedback and blended

measurement feedback. The clear advantage of the collocated

measurement case is the global stability aspect, although it

was shown that in the presence of controller digital delays

and noisy measurements, the stability was limited to the

performance of the feedback control equipment. For the non-

collocated sensor, closed loop performance was limited by
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the amount of natural damping present in the system, and

hence pure non-collocated rate feedback has very limited

performance for lightly damped structures. A higher order

compensator would be required to achieve satisfactory

results with the non-collocated measurement.

For the blended measurement, it was shown that blending

ratios of .85 and below resulted in stable responses for all

positive values of the feedback gain similar to the

collocated case. Alternatively, for a matched control

effort for a given input disturbance, it was shown that

greater damping of the first flexible mode could be achieved

than with the collocated sensor alone. The disadvantage of

the blended measurement, in addition to the fact that an

additional piece of hardware is required, is the decrease in

effectiveness of damping the second mode. The inability to

dampen the second mode is due to the approximate pole-zero

cancellation which occurs as the blending ratio is

increased.

Comparing the blended and LQG methods, both methods

were capable of adequately controlling the low frequency

modes. The LQG compensator was more difficult to design and

implement, but required only a single sensor. It does have

the limitation of only being able to control modes which are

modeled by the estimator, and therefore the compensator
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order continues to increase to control the higher modes.

Both systems were minimum phase.

In summary, neither the anticipated increase in

bandwidth nor a decrease in RMS response was realized using

the blended measurement on the ACB. The previous work

suggesting this used different output locations when making

comparisons. For a fixed output location, such as the

position eight sensor on the beam, the bandwidth was limited

by the location of the first zero. It was shown that the

zero location is not altered using collocated or blended

feedback. The decrease in RMS was not achieved due to the

poor observability of some of the modes using blended

feedback. It does however, have some advantages. In

addition to simplicity, the two parameters available provide

the ability to set the ratio of control expended on the

first two modes using a and then set the overall damping

using k. Based on these results, a design tradeoff exists

between using an additional sensor with a simple control law

to that of a single sensor and a more sophisticated control

law. The overall merits of the blended measurement will

depend on the actual task and required design specifications

and the physical properties of the structure.
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V. Closed Loop Control on ACB Without End Mass

Mode Shape Comparisons

A second comparison case of using single and blended

measurements was performed using the ACB with the end mass

removed. Without the end mass, the modal information sensed

by each of the accelerometers is dramatically different.

This can easily be seen by comparing the mode shapes for the

first four modes of the beam in the two configurations.

Figure 5.1 shows the mode shapes for the beam with end mass

installed while Figure 5.2 shows the mode shapes with end

mass removed. The mode shapes were obtained from the

eigenvectors of the ten element FEM model which were used to

diagonalize the global mass and stiffness matrices. The

same result could be obtained experimentally by taking

transfer functions for each of the ten nodes and then

extracting the modal information using STAR Modal software.

The mode shapes shown were normalized with respect to the

maximum displacement for each mode.

For the beam with end mass, the collocated sensor

contains information about the first four modes as shown by

the amplitude of the mode shape at position five. In

contrast, the sensor at the tip is primarily composed of

5-1



ft iw .d I asetero(wtV Iobat)31U

1.21 -- -, ............... l.IoI...d ... .... .....-
0.6 / ... \..

M4 /N.-. 2

0.2 /

.0,4- 
/. ,

•0 .4 --OA - \\'j-0. 
/

.1 Made 4
-1 .2 , ,

Figure 5.1 Mode Shapes of ACB with End Mass Installed.

H m m d m d • e b rm m t r b o t b re

I - M

1.4.

428

...... ..... .......

4.6 Mof 4 WO. 2 .....

41 
p@ ow"

Figure 5.2 Mode Shapes of ACB with End Mass Removed.
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mode one information only. For the higher modes, this

position corresponds to a node where the beam acts as a

tixed-pinned beam for all modes except mode one. When the

end mass is removed however, both the position five and

position eleven sensor information will contain modal

information for the first four modes. Because of this

difference, the blending test was repeated for this second

configuration to compare and contrast with the first case

results.

Open Loop Response

For analytical simulations, the FEM program was rerun

setting the mass and rotary inertia terms at the end to

zero. An iteration on the beam modulus was done to match

the measured natural frequencies as close as possible.

Modal damping factors were then added to tne model based on

the experimental open loop measurements. Comparisons

between the analytical frequency response and the measured

frequency responses for the collocated and the non-

collocated sensor are shown in Figures 5.3 and 5.4

respectively. Again t*uere is good agreement in modeling

both the system poles and zeros for each of the

measurements. Table 5.1 shows the values of the poles and

zeros for the two measurements. Not listed are the zeros at
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Figure 5.3 Open Loop Response of ACB with End Mass
Removed for the Collocated Sensor.

the origin corresponding to velocity and acceleration

measurements. Note that again'the non-collocated sensor

does not have the alternating pole-zero pattern

characteristic of the collocated sensor.

Table 5.1 Pole-Zero Locations for ACB Without End Mass

zeros
poles (rad/sec) pos 5 pos 11
±39.3i ±84.5i ±202
±218i ±563i ±840i
±6441 ±1307i ±1069i
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Figure 5.4 Open Loop Response for ACB with End Mass
Removed for the Non-Collocated Sensor.

The effect of the blending ratio is determined by

observing the open loop zero patterns as the blending ratio

is increased as shown in Figure 5.5. The c's mark the zero

locations for a = 0 and the n's mark the a = 1 locations. A

value of a = 0.4 corresponds to the point where the zeros

coalesce on the imaginary axis. Blending ratios greater

than this result in real valued zeros and hence a non-

minimum phase system. For the beam with end mass installed,

the maximum blending ratio was 0.85. Thus, the maximum

blending ratio to maintain a minimum phase system is

dependent on the modal information contained in the two
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Figure 5.5 Open Loop Zero Locations for a Varying
Blending Ratio.

sensor outputs. In both beam configurations, the second

mode is the mode which goes unstable under non-collocated

proportional feedback. With the end mass removed, the non-

collocated sensor contains a greater percentage of mode two

information and therefore the system will be NMP for a lower

value of the blending ratio.

Closed LOOD Results

As was done for the beam with end mass, RMS values of

the position eight sensor were measured and plotted against
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the proportional feedback gain. A 100 millivolt (0-200Hz)

random disturbance was applied to the actuator while

measuring the RMS response of position eight sensor for a

varying feedback gain. The results are shown in Figures 5.6

and 5.7 for both the RMS response and the control effort.

The theoretical results using Eqn 4.10 are shown for

comparison. Unlike the results with the end mass in place,

the RMS response is now very similar for the two cases.

This is a result of the position eight sensor being located

close to a node location for the second mode, as can be seen

0.07

0.06 -

NIS0.05

c 0.04 "

0 .03 -CO...................................0.03 Cofocat~ed ....... •........... •............. ¥.............

Blended .........

0.021
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Figure 5.6 Comparison of Position Eight RMS Velocity for

Collocated and Blended Feedback.
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Figure 5.7 Comparison of Control Effort for an
Increasing Feedback Gain.

in Figure 5.2. As a result, the near pole-zerp cancellation

which occurs for the second mode has little effect on

position eight performance. The performance may be

degraded, however, for other locations along the beam. For

a blending ratio of 0.4 (maximum for NMP), the corresponding

gains of k = 10 for the collocated and k = 8.8 for the

blended were chosen. These values yield a theoretically

matched RMS velocity response at position eight. Figure 5.8

shows the experimental closed loop comparison for the

collocated and blended control laws. As shown in the plot

for the same RMS level, the blended control exercises
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greater control (higher damping) for mode one while being

less effective for the second mode. Modal damping values

obtained using STAR Modal are presented in Table 5.2.

Table 5.2 Damping Factors L%) for Matched RMS Response

collocated blended open loop
mode predicted measured predicted measured

1 18.0 17.7 33.4 31.9 3.26
2 21.7 24.0 2.48 3.2 2.50
3 3.58 3.30 4.73 3.5 0.60

100

0IIA

S~KEY
10" • |Blended

- *

1Ig 10' 108 tos

PRlO (HI)

Figure 5.8 Closed Loop Frequency Response Comparison For
the ACB Without End Mass.

Comparing the damping ratios using the blended and

collocated measurements, similar behavior to the previous
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example was exhibited. The blended measurement was

extremely effective in damping mode one, while the near

pole-zero cancellation at the second mode resulted in the

second mode damping remaining at its open loop value.

Again, the control effort for the blended was lower than the

collocated case because of the notch at the second mode.

Conclusions

Closed loop control on the ACB without end mass was

demonstrated for the two control laws. Choosing a blending

ratio of 0.4 corresponded to the maximum achievable while

maintaining a minimum phase system. For either a matched

RMS response or a matched control effort, using the blended

control laws enables an increase in the achievable mode one

damping with a resulting decrease in ability to dampen mode

two. For the ACB without the end mass, adequate control

over the first three modes was exhibited using only a

collocated sensor. Unless mode one damping was t~ie only

concern, little to no overall performance increase is

achieved by incorporating the second non-collocated sensor.

Comparing this case to that of the beam with end mass,

proper choice of the blending ratio for minimum phase

behavior is dependent on the modal information available at

each sensor. The blending ratio can be adjusted to yield
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maximum mode one information while maintaining a minimum

phase system. For a system where the non-collocated sensor

contains different modal information than the collocated

sensor, such as the beam with end mass, the blending method

offers an alternative to increasing compensator complexity

to achieve desired closed loop results.

The two cases considered demonstrated the advantages

and disadvantages of using a blended measurement. Neither

configuration of the beam, however, was a proper analogue to

a gimbal stzucture, the prime focus of the investigation.

Unfortunately, a physical gimbal was not available for

experimental testing. In lieu of experimental testing on a

gimbal, the next chapter will present a theoretical analysis

using a blended measurement.
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VI, ApDlication of Blended Method to a Torsional Model

A last example of using a blended measurement is

explored on a gimbal mechanism modelled as a free-free

torsional rod. The torsional rod is analogous to the

gimbal structure in that it has the rigid body motion and

symmetric modes typical of a gimbal. Although a simple

model is used, closed loop performance trends would be

similar to those obtained with a more sophisticated model of

an actual structure. A simplistic method of minimizing the

line of sight errors on a gimbal was the primary reason for

exploring the blended method.

Model Development

Using a six element FEM model, a state-space

representation of the model was created using the method

developed in Chapter III. Two degrees of freedom were

modeled for each element corresponding to the axial rotation

at each node. For the torsional rod, the mass and

stiffness matrices are given as [8:389]:

M p I2 1[_I1 -1] (6.1)
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with p, Ip, L and GJ defined as the rod density, polar

moment, length and torsional stiffness of the rod

respectively. Three sensor locations were chosen for the

output, one at each end of the model and one at the

midpoint. The outputs at the ends represent the collocated

and non-collocated rotation measurements. The midpoint

rotation sensor represents the line of sight measurement. A

torque input was applied at the first node.

The FEM results were compared to the exact solution by

solving for the transfer function between the rotation at

any point along the rod and a torque input at the end. The

governing equation for a torsional rod in non-dimensional

form is:

a2 0 (x, t) _ 0(x, t) = 0 (6.2)
ax 2  at2

Taking the Laplace transform of Eqn 6.2 and the boundary

conditions yield:

)ii(XS) + 129(x,s) 0

0'(1,s) = 0, e'(O,s) = T(s)

iI aioa
2 () (6.3)

a-x ax 2

X2A-s 2

6-2



It is then straightforward to assume a solution and solve

for the constants. The resulting transfer function for an

arbitrary location along the beam is given as:

@(x,s) _ sinXsinXx + coslcoslx (6.4)
T(s) Isin6

For the collocated sensor, Eqn 6.4 reduces to:

e(0,s) - cosL (6.5)
T(s) Xsin(

and for the non-collocated sensor at the far end of the rod,

the transfer function is given as:

O(Is) - 1 (6.6)
T(s) 7sinX

It is clear from Eqn 6.6 that the exact solution has no real

axis zeros, and therefore it is not truly a NMP system.

Systems of this type, however, do exhibit NMP-like behavior

(1].

A comparison of the pole-zero locations between the

exact solution and the FEM is contained in Table 6.1. The

zeros listed for the non-collocated case in the FEM model

are a result of model truncation. The frequency response

comparisons between the FEM and the exact transfer function

are shown in Figures 6.1 and 6.2 for the two sensor
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locations. The FEM accurately models the first few flexible

modes and then deviates at higher frequencies as expected

for a low order model.

Table 6.1 Pole-Zero Locations for a Torsional Rod

poles (rad/sec) col zeros non-col zeros
exact FEM exact FEM exact FEM
0,0 0,0 ±n/2i ±1.58i - ±14.7
±ni ±3.18i ±37t/2i ±4.83i - ±14.7

±2rdi ±6.58i ±5,n/2i ±8.42i - ±14.7

Similar to the blending used on the cantilevered beam,

the two rotation sensors (velocity measurements were used

'0'

10". Z Exact -

F rý, ........

¶101¶0" ¶O' 10' ¶0'

Frequentc (radutec)

Figure 6.1 Frequency Response Comparison Between Exact
and FEM Model for Collocated Sensor on a Torsional Rod.
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Figure 6.2 Frequency Response Comparison Between the
Exact and FEM model for the Non-Collocated Sensor on a
Torsional Rod.

with the beam) at each end of the beam were combined as the

input to the controller as in Eqn 6.6.

6 ble.d = (1 - a) Ocoulocated + aonon-collocated (6.6)

The pole-zero pattern as a function of the blending ratio is

shown in Figure 6.3. As with previous examples, the

blended system will remain minimum phase for a range of a.

The maximum value of the blending ratio for a minimum phase

system is a = 0.5 which was expected due to the symmetry of

the model.
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Figure 6.3 Pole-Zero Pattern as the Blending Ratio is
Increased for a Torsional Rod.

Unlike the cantilevered beam, pure feedback of the

position sensor will not stabilize the system because of the

rigid body mode. As a minimum, a PD or lead compensator is

required to stabilize the system. For comparison purposes

on the rod model, a lead compensator will be used.

Closed Loop Performance Comparison

The lead compensator used takes the form of:

G:(s) = k (s + z) (6.7)
(s +P)

6-6



where the zero (z) and the pole (p) ate chosen to provide

phase lead at the approximate bandwidth. For both the

collocated and blended feedback, the values of z and p were

set at 1 and 10, respectively, for a target bandwidth just

past the first flexible mode. For comparison, the gain

value k was set such that both the collocated and blended

systems had an identical RMS response at the target

bandwidth. A block diagram of the closed loop system is

shown in Figure 6.4. MATLAB was used to compute the closed

loop state-space models and compare the output response as a

disturbance

Lad+

Figure 6.4 Closed Loop Block Diagram for a Torsional

Rod.
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function of the blending ratio. Computing the RMS response

as detailed in Chapter IV, the resulting RMS response at the

midpoint sensor is shown in Figure 6.5. The input

disturbance was set at 0.1 with ten percent of the

disturbance assumed as the measurement noise. As depicted

in the figure, the RMS output is insensitive to the blending

ratio while the system remains minimum phase (a < 0.5). The

insensitivity is a result of the midpoint sensor location

being at a node for the symmetric modes of vibration. A

gain of 10.5 was chosen for the comparison. This value

7:

5

3 4

2
Collocated

S81~~Bendled.....

2 46 10 12 14 16

Feedbact Galn K)

Figure 6.5 Comparison of RMS Value at Midpoint Position

for Random Disturbance.
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Figure 6.6 Step Response Comparison at Midpoint of
Torsional Rod Using Collocated and Blended (a=0.45)
Feedback.

represented an operating point where further gain increases

did little to improve the RMS response. With the value of

the gain chosen, the response to a unit step was compared as

shown in Figure 6.6, and the resulting bandwidths in Figure

6.7. The results show the blended system has a faster rise

time, a shorter settling time and slightly lower overshoot

than the collocated system. There is also some increase in

the bandwidth as shown in Figure 6.7, although the location

of the first zero, which is identical for both systems,

limits the achievable bandwidth increase as previously

discussed.
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Figure 6.7 Bandwidth Comparison Using Collocated and
Blended (a=0.45) Feedback on the Torsional Rod.

From the comparison presented, it appears that better

tracking performance can be achieved using a blended

measurement when comparing RMS levels, bandwidth, and the

step response for the midpoint rotation. This result is

somewhat misleading. For the midpoint location, there is a

pole-zero cancellation at all the symmetric modes of the

rod. Thus, the midpoint represents a node for all the even

numbered flexible modes. As shown in the blended pole-zero

patterns in Figure 6.3, the zeros coalesce at the even

numbered poles and therefore the observation of the even

numbered modes is decreased as the blending ratio is
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increased. This results in the control effort being exerted

on only the odd numbered modes which are the only modes that

effect the midpoint rotation. For the ideal model with

uncoupled modes and a blending ratio of .5, the midpoint can

remain stationary while the ends of the rod oscillate

undamped and undetected by the blended measurement. This

situation is alleviated by reducing the blending ratio to

provide some observation and consequently some damping of

the even numbered modes. It is for this reason that a was

set to 0.45 in the previous comparison plots. The

differences in Figures 6.6 and 6.8 demonstrate how system

Stop R.p..6o
164

1.2 J%\ .

I I f
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blnded --
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4 10 12 14 Is Is 'lO

Time (60C)

Figure 6.8 Step Response at End Point of a Torsional
Rod.
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performance is highly dependent on which sensor is chosen as

the output, even though in the steady-state (with input

removed), the final rotation angle will be identical for all

locations along the rod.

Conclusions

A gimbal structure was modeled as a torsional rod and

closed loop control was demonstrated using a lead

compensator. For blending ratios of a < 0.5, the system

remained minimum phase. It was shown that a shorter

settling time with less overshoot can be achieved using a

blended measurement for the midpoint location while

adversely effecting the rotational displacements at the

ends. Choice of a proper blending ratio will be dependent

on the RMS jitter requirements for several locations on the

gimbal as well as the symmetry of the actual gimbal. In

practice, the lightly damped modes which are nearly

unobservable using the blended measurement are undesirable.

In a physical model, some modal coupling will be present

netween modes which will cause the symmetric modes to excite

the modes effecting the midpoint location. Due to the

observability problems associated with the blended

measurement, and no increase in achievable bandwidth nor
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decrease in RMS levels, it appears the blended method is not

attractive for implementation on an actual gimbal.
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VII. Conclusions and Recommendations

An attempt to improve closed loop performance using

feedback of the blended ratio of two separate measurements

was investigated for several configurations. For all models

tested, a blended measurement will yield a minimum phase

system for a range of the blending ratio values. The range

for which the minimum phase behavior can be maintained can

be found by plotting the locations of the open loop zeros as

the blending ratio is increased. It was shown that for a

beam in bending, computing transmission zeros using an FEM

accurately matched the exact solutions using transcendental

transfer functions. The zero movement along the imaginary

axis was illustrated on the ACB by measuring the frequency

response of the blended output. Observing the blended

locations of the antiresonances in the frequency response,

the range of minimum phase behavior corresponds to the range

of blending for which the antiresonances are separated.

The alternating pole-zero pattern on the imaginary axis

which guarantees the stability of the collocated

sensor/actuator also limits the achievable performance using

the blended measurement. As the zeros move towards each

other along the imaginary axis, they approach the poles
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lying between them. This results in an observation problem

for every other mode. The severity of the pole-zero

cancellation is dependent on the blending ratio chosen.

From the designer's perspective, adding an additional sensor

to achieve unobservable modes is not an attractive result.

There are configurations, however, where the blended method

has its advantages.

As demonstrated in Chapter IV on the ACB with an end

mass, the blended measurement represents a simple controller

design alternative to using an estimator/regulator

combination to adequately control first mode bending. If

position control of the end of the beam was the primary

concern, this represents an attractive alternative.

Controlling the end position (or acceleration) of a flexible

beam is a topic receiving considerable attention in the

field of robotics and automation. Further investigation of

the suitability of this technique to robotics applications

should be investigated. A second possible application is in

multi-input-multi-output systems where separate

sensor/actuator sets can be assigned control of different

modes. With proper placement and blending of the sensors

and actuators, it may be possible to control all the modes

adequately with this simple technique.

Focusing on the primary reason for this investigation,

active control of a gimbal structure, neither the increased
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bandwidth nor lower line-of-sight RMS levels thought

possible at the start of the investigation was achieved. As

illustrated in Chapter VI, increasing the contribution of

the non-collocated sensor into the measurement leads to

observability problems and degrades the performance at other

locations on the gimbal.

7-3



Appendix A: Calibration Data

Actuator

To use the actuator for either excitation or control

requires the computation of a calibration constant in terms

of force out per voltage in. The manufacturer provided a

calibration constant of 1.9 Lbf/amp (in current mode over

the operating range 0-200 Hz). The APS-114 amplifier has a

voltage monitor output which yields 4 amps out per volt

monitored. The spectrum analyzer was used to obtain the

transfer function of control voltage in to the APS-114

monitor voltage out of (.707volts/volt). In this way the

total calibration was formed as the product of these three:

1.90 b-f x 4 amp x 0.707 volt _ 5 37 Lbf (A.l)
amp volt volt volt

As a check on the manufacturer's provided constant, a test

was performed by mounting an accelerometer directly on the

armature of the shaker with the armature unattached from the

beam. In this configuration, there is essentially only

rigid body motion. This configuration should yield a flat

transfer function of accelerance over force. The governing
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equation is then just F = ma, or using the measured values:

Kf Ef = m Ka Ea (A.2)

where m is the mass of the armature plus accelerometer, Ka

is the accelerometer constant, Ef and Ea are the measured

voltages of the force and acceleration respectively, and K1

is the desired force constant. Solving for Kf yields:

K, = m Ka (A.3)

where the ratio of the voltages is the measured value of the

transfer function. Using this method and taking an average

value of the transfer function over the frequency range

produced a calibration constant of 5.4 Lbf/volt and thus the

manufacturer's value was accepted as the correct calibration

constant.

Accelerometers

The piezo-resistive accelerometers have the advantage

of recording dc levels and thus the calibration is obtained

by simply reading the output voltage with the accelerometer

in the upright position and then taking a second reading in

the inverted position. The resulting voltage change
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corresponds to a 2g acceleration. The three accelerometers

were calibrated in this way with the following results. For

all calibrations and tests, the signal conditioner gains

were set at 50.

Table A.1 Accelerometer Calibrations

serial # position Volt/g ft/s 2/volt

AH72 5 .885 36.35

BA26 8 .982 35.67

BA51 11 .902 32.78

The above calibrations were assumed constant over the

operating range. To verify this - mption the

accelerometers were checked against an Endevco accelerometer

standard. During this test, both the tested accelerometer

and the standard are excited at a known frequency, an- the

tested accelerometer is then compared against the standard.

Although there was some frequency dependance noted, using

the constants given above represented an average value over

of the operating frequency range.

InteQration Circuits

As previously described, the integration circuits

contained several stages of amplification between the output
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of the accelerometer and input to the digital controller.

Rather than calibrate each stage individually, a single

calibration constant was obtained by taking the transfer

function of the entire integration circuit over the

frequency range of interest. The overall circuit gain for

an integrator is computed by dividing the measured gain at a

given frequency by the frequency (in rad/sec). For an ideal

integrator, this value is a constant. An average value of

the gain in the 1 - 200 Hz frequency range for each

measurement channel is listed in the table below.

Table A.2 Integration Circuit Calibration Factors

position pre-amp post-amp total gain (v/v sec)
5 5 20 64.5
8 5 20 57.4

11 5 20 60.3

To correlate gain values used in the digital controller

to those used in modelling, it is simplest to set the

reciprocal of the velocity and force calibrations at the PC-

1000 input and output channels. For the velocity

measurements, values from Table A.1 and A.2 are combined.

The reciprocal is then set as the input gain factor to the

PC-1000. The PC-1000's output attenuation factor for the

shaker is set to the reciprocal of the force calibration

constant.

A-4



Appendix B: State-Space Models

ACB With End Mass

A =
Columns 1 through 4

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

-6.3541e+005 0 0 0
0 -1.7430e+005 0 0
0 0 -2.2931e+004 0
0 0 0 -1.7341e+002

Columns 5 through 8
1.0000e+000 0 0 0

0 1.0000e+O00 0 0
0 0 1.0000e+000 0
0 0 0 1.0000e+000

-9.5655e+000 0 0 0
0 -5.0099e+000 0 0
0 0 -3.6343e+000 0
0 0 0 -2.6337e-001

B0
0
0
0
0

-4.6102e+000
1.0464e+001
7.6929e+000
5.7942e-001

C =

Columns 1 through 4
0 0 0 0
0 0 0 0
0 0 0 0

Columns 5 through 8
-2.4803e-001 5.7156e-001 8.1911e-001 2.0786e-001
6.5142e-001 -3.9427e-001 8.9463e-001 5.5993e-001

-4.2821e-002 1.8246e-002 -1.2273e-001 l.O000e+000
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ACB Without End Mass

A ==

Columns 1 through 4
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

-1.8288e+006 0 0 0
0 -4.3118e+005 0 0
0 0 -5.0910e+004 0
0 0 0 -1.5319e+003

Columns 5 through 8
1.0000e+000 0 0 0

0 1.0000e+00o 0 0
0 0 1.0000e+000 0
0 0 0 1.0000e+000

-1.6228e+001 0 0 0
0 -7.8798e+Ooo 0 0
0 0 -1.1282e+001 0
0 0 0 -2.5519e+000

B0

0
0
0
0

8.2318e+000
1.2985e+001

-1.2786e+001
4.962le+000

C =

Columns 1 through 4
0 0 0 0
0 0 0 0
0 0 0 0

Columns 5 through 8
1.3231e-001 3.0766e-001 -6.6519e-001 2.3091e-001

-2.0014e-001 -5.1377e-001 -2.7479e-001 5.9141e-001
4.8728e-001 7.2424e-001 1.0000e+000 1.0000e+000
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Appendix C: MATLAB FEM Program

function [A,B,C,D]=bildabcd(E,mplate)

% function CA,B,C,D]=bildabt-d(E,mplate)
% This program returns the state-space model for a ten
% element cantilevered beam in bending. The states
% represent the velocity measurements at the nodes
% The modulus and the end mass are input to match exp data.
% The length of the tenth element is 1 inch longer due to
% the plate thickness.

0bgzrs(22)

kbig=zeros(22,22);

p=5.3727;
a=5. 3932e-3;
1=0.58958;
110=. 63125;
iz=3 .31115e-6;

mgen=[156, 22*1,54,-13*1;
22*1,4*1*1,13*1, -3*1*1;
54,13*l,156,-22*1;
-13*l,-3*l*l,-22*1,4*1*l);

kgen=[12,6*1,-12,6*1;
6*1,4*1*1, -6*1,2*1*1;
-12, -6*1, 12,-6*1;
6*1,2*1*1,-6*l,4*1*1];

mgenlO= [156,22*110,54,-13*110;
22*110,4*110*110, 13*l10,-3*ll0*l10;
54,13*110,156, -22*110;
-13*110,-3*11o*110,-22*110,4*110*110J;

kgenlo=[ ?,6*110,-12, 6*110;
6*110, 4*1lO*110, -6*110,2*110*110;
-12,-6*110,12, -6*110;
6*110,2*110*110,-6*110,4*110*110J;

kel=(E*iJZ/1A3) *kgen;
mel=(p*a*1/420. )*mgen;

kellO=(E*iJz/10A 3) *kgenlo;
mellO=(p*a*110/420.) *mgenlo;
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for I=1:2:17
mbig(I:I+3,I:I+3)=mbig(I:I+3 ,I:I+3) + mel;
kbig(I:I+3, I:I+3)=kbig(I: 1+3,1:1+3) + kel;

nibig(19:22,19:22)=mbig(19:22,19:22)+mellO;
kbig(19:22,19:22)=kbig(19:22,19:22)+kellO;

% add lumped masses
mbig(21,21)=1.9426e-3 + mbig(21,21) + mplate;
mbig(22,22)=mplate*.0630787 +mbig(22,22) ;
mbig(15,15)=1.9426e-3 + mbig(15,15);
mbig(9,9)=21.4610e-3 + mbig(9,9);

% partition matrix
M=mbig(3:22,3:22);
K=kbig(3:.22,3:22);

% put in state-space form
[phi,lam]=eig(K,M);
wn2=diag(diag(inv(M*phi) *K*phi));
A=zeros(40,40);
A(21:40, 1:20)=-wn2;
B=zeros (4 0,1) ;
Cp=zeros(3,20);
F=z eros (2 0, 1)
F(7, 1)=1;
B(21:40, 1)=inv(M*phi) *F;
Cp(1, 7)=1;
Cp(2, 13)=1;
Cp(3 ,19)=1;
A(1: 20, 21: 40) =eye (20) ;
C=zeros(3,40);
C(: ,21:40)=Cp*phi;
D=zeros (3, 1);
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Appendix D: Analog Gain Control

To accommodate different feedback gains without having

to reprogram the PC-1000, an analog adjustable gain circuit

was built. This circuit was used to measure output and

control levels as a function of the feedback gain. The

circuit consists of an amplifier and an adder as shown in

Figure D.l. The gain was set by varying the value of the

feedback resistor using a decade resistor box. The adder is

placed after the amplifier to enable the addition of the

random input without amplifying the random signal. This

circuit was used in series with the PC-1000. The velocity

measurements were calibrated and blended using the PC-1000

and then amplified using the analog circuit.

Figure D.l Circuit Diagram for Analog Amplifier.
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The calibration constant of the shaker was included when

calculating the amplifier gain. The calibration curve is

shown in Figure D.2.

le6
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Figure D.2 Calibration Curve for Analog Amplifier.
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